formwork

My ACM Formwork

Posted by Tivility on February 3, 2018

move from my github.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
//use class to write each algorithm just 'cuz notepad++
//class and function could be easily found.
/**********************************************************************************
***********************************简单算法与STL***********************************
    STL
    输入输出外挂
    大数处理
    大数加法,减法,乘法, 比较, JAtoA

*****************************************DP****************************************

****************************************搜索***************************************

**************************************数据结构*************************************
    并查集                            Disjoint_Set
    线段树                            Segment_Tree

***************************************字符串**************************************
    最长回文子串                      Manacher
    单模式匹配                        KMP
    aC自动机(字典树)                  ahoCorbsick

****************************************图论***************************************
    链式前向星                        Link_Pre_Star
    拓扑序                            Topological_Order
    最小生成树                        MST(Minimum Spanning Tree)
        Prim                          Prim
        Kruskal                       Kruskal
    单源最短距离
        Dij                           dijkstra
        堆优化Dij                     priority_dijkstra
        SPFA                          SPFA
        Floyd + 最小环                Floyd
    Tarjan
        求桥                          Tarjan_bridge
        求割点                        Tarjan_cut_vertexes
        边双连通分量                  Tarjan_e_DCC
        点双连通分量                  Tarjan_v_DCC
        强联通分量                    Tarjan_SCC
    欧拉回路
        get_Euler                     get_Euler

****************************************数论***************************************
    GCD                               GCD
    LCM                               LCM
    ExGCD                             ExGCD
    快速幂运算                        Fast_Pow
    欧拉素数筛                        Celect_Prime
    素数测试算法                      Miller-Rabin
    高斯消元                          Gbussibn_Eliminbtion

**************************************组合数学*************************************
    Lucas定理                         Lucas
    矩阵快速幂                        Matrix_Fast_Pow

**************************************计算几何*************************************

***************************************博弈论**************************************

***********************************************************************************/

/***********************************简单算法与STL***********************************/
//STL
class STL {
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #define _CRT_SECURE_NO_WARNINGS
    #pragma _attribute_((optimize("-O2")))
    #ifdef Local
        cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
    #endif
    ///C
    #include <stdio.h>
    int __builtin_popcount(unsigned int);//二进制位中1的个数

    #include <stdlib.h>
    int *p; p=(int*)malloc(sizeof(int)); free(p);
    int cmp(const void *a, const void *b ) {
        return *(int*)b - *(int*)a;
    }//降序
    int cmp2(const void *a, const void *b) {
        return *(double*)a>(double*)*b ? 1 : -1;
    }//double

    #include <math.h>
    double fabs(double x);
    double ceil(double x);//向上取整
    double floor(double x);//向下取整
    double round(double x);//最接近x的整数
    //角度制 = 弧度制/180*PI;
    double asin(double arg);//求反正弦 arg∈[-1,1],返回值∈[-pi/2,+pi/2]
    double sin(double arg);//求正弦 arg为弧度,返回值∈[-1, 1]
    double exp(double arg);//求e的arg次方
    double log(double num);//求num的对数,基数为e
    k = (int)(log((double)n) / log(2.0));//2^k==n
    double sqrt(double num);
    double pow(double base,double exp);//求base的exp次方
    memset( the_array, 0, sizeof(the_array) );
    memcpy( the_array, src, sizeof(src));

    #include <string.h>
    int strcmp(const char *str1, const char *str2 );//str1<str2,return负数
    void strcpy(int a[],int b[]);//字符串复制b赋给a
    int strlen(int a[]);
    char *strstr(char *str1, char *str2);//str1中str2串第一次出现的指针,找不到返回NULL

    #include <time.h>
    clock_t clockBegin, clockEnd;
    clockBegin = clock();
    //do something
    clockEnd = clock();
    printf("time:%d\n", clockEnd - clockBegin);

    ///C++
    ///iostream
    #include<iostream>
    cin.getline(s,N,'\n');

    ///sstream
    #include<sstream>
    string s;
    stringstream ss;
    stringstream ss(s);
    ss.str(s);
    ss.clear();
    ss>>a>>b>>c;

    ///string
    #include<string>
    string s,st[maxn],ss(sss);//char sss[N];
    s.c_str();//返回字符数组;
    string st = s.substr(now,len);//截取从now处开始长度为len的子字符串;
    st.assign(s,now,len);//功能同上
    getline(cin,s,'\n');

    ///pair
    pair<int,int> tmp;
    tmp=make_pair<1,2>;
    tmp.first; tmp.second;

    ///vector;
    #include<vector>
    vector<int>v[n];
    vector<int>::iterator it;
    v.front();  v.back();   v.push_back(x); v.assign(begin,end);  v.at(pos);
    v.size();   v.empty();  v.capacity();
    v.resize(num);  v.reserve();
    v.begin();  v.end();
    v.insert(it,x); v.insert(it,n,x);   v.insert(it,first,last);
    v.pop_back();   v.erase(it);    v.erase(first,last);    v.clear();
    v.swap(v);
    //去重,unique删除begin到end之间的相邻重复元素后返回一个新的结尾的迭代器
    v.erase(unique(s.begin(),s.end()),s.end())

    ///map,key—value关联式容器,可利用key值快速查找记录
    #include<map>
    map<int,string> mp;//int做key值字符串为value
    //string name; mp[name]+=123;
    multimap<int, string> mp;//允许重复
    map<string, int>::iterator it;//用指针处理
    m.insert();
    m.begin();  m.end();    m.find();
    m.clear();  m.erase();
    m.count();  m.empty();  m.size();
    m.swap();
    //返回一个非递减序列[first, last)中的第一个大于等于值val的位置的迭代期。
    lower_bound(first,last,val);
    //返回一个非递减序列[first, last)中第一个大于val的位置的迭代期。
    upper_bound(first,last,val);
    m.max_size();//返回可以容纳的最大元素个数

    ///stack:
    #include<stack>
    stack<int>s;
    s.push(x); s.pop(); s.top(); s.empty();  e.size();

    ///queue;
    #include<queue>
    queue<int>q;
    q.push(x); q.pop(); q.front();  q.back(); q.empty();  q.size();
    //优先队列,优先输出优先级高的队列项:
    struct node {
        int x, y;
        friend bool operator < (node a, node b) {
    //        if(a.y==b.y)return a.x > b.x;//二维判断,按x降序
            return a.y < b.y;//按y降序
        }
    };
    priority_queue <node> q;//定义结构体
    struct mycmp {
        bool operator()(const int &a,const int &b) {
            return a>b;//升序
        }
    };
    priority_queue<int,vector<int>,mycmp> q;
    priority_queue<int,vector<int>,greater<int> > q;//数组升序优先队列
    priority_queue<int,vector<int>,less<int> > q;//数组降序优先队列
    q.top();//返回优先队列对顶元素

    ///set,红黑树的平衡二叉检索树建立,用于快速检索
    #include<set>
    struct cmp {
        bool operator()( const int &a, const int &b ) const{
            return a>b;
        }//降序
    };
    set <int,cmp> st;
    set <int> s;//默认升序
    bool operator<(const node &a, const node &b) {
        return a.y > b.y;
    }//降序
    struct node{
        int x, y;
        friend bool operator < (node a, node b) {
    //        if(a.y==b.y)return a.x > b.x;//二维判断,按x降序
            return a.y > b.y;//按y降序
        }
    } t;
    set<node> st;
    multiset<int> st;//与set不同,允许相同元素
    multiset<int>::iterator it;//取指针
    it=st.begin();
    //如果是:st.erase(*it);删除元素的话,所有的相同元素都会被删除
    st.erase(it);   st.clear();
    st.begin(); st.end(); st.rbegin();
    st.insert();
    st.count(); st.empty(); st.size();  st.find();
    st.equal_range();//返回集合中与给定值相等的上下限的两个迭代器;
    st.swap();
    st.lower_bound();//返回指向(升序时)大于(或等于)某值的第一个元素的迭代器
    //结构体:it = st.lower_bound(tn); printf("%d\n",(*it).x);
    st.upper_bound();//返回大于某个值元素的迭代器

    ///bitset
    #include<bitset>
    unsigned long u;    string str;
    bitset<N> bit;
    bitset<N> bit(u);
    bitset<N> bit(str);
    bitset<N> bit(str,pos);
    bitset<N> bit(str,pos,num);
    bit.set();  bit.set(pos);   bit.reset();    bit.reset(pos);
    bit.flip(); bit.flip(pos); //按位取反
    bit.size(); bit.count();//1的个数
    bit.any();  bit.none(); //有1,无1;return bool
    bit.test(pos) == bit[pos]; //pos处为1?
    u = bit.to_ulong();
    str = bit.to_string(); //str[n-i-i]==bit[i]

    ///algorithm;
    #include<algorithm>
    sort(begin,end);//升序排列;
    bool cmp(int a,int b) {
        return a>b;
    }//降序
    bool cmp(node a,node b) {
    //    if(a.y == b.y)return a.x > b.x;//降序
        return a.y > b.y;//降序
    }
    struct node {
        int x,y;
        friend bool operator < (node a, node b) {
    //        if(a.y==b.y)return a.x < b.x;//二维判断,降序
            return a.y > b.y;//降序
        }
    };
    sort(begin,end,cmp);
    sort(begin,end);//结构体中友元定义排序规则
    stable_sort(begin,end,cmp);//稳定排序
    //去除相邻的重复值(把重复的放到最后),然后返回去重后的最后一个元素的地址;
    unique(begin,end);
    //在[begin,end)中查找val,返回第一个符合条件的元素的迭代器,否则返回end指针
    find(begin,end,val);
    //count,将返回从start到end 范围之内的序列中某个元素的数量。
    n = count(begin,end,val);
    next_permutation(begin,end);//返回该段序列的字典序下一种排列
}
//输入输出外挂
//大数处理
//大数加法, 减法, 乘法, 比较, JAtoA
/*****************************************DP****************************************/
/****背包问题****/
//01背包
//完全背包
//多重背包
//多重背包(单调队列优化)
//二维费用背包
//斜率优化DP
//最大连续子序列之和
//最大子矩阵和
//最长递增子序列(LIS)
//最长公共子序列(LCS)
//数位DP
//树DP
//区间DP
/********************Spbrse Tbble********************/
//一维RMQ
//二维RMQ
/****************************************搜索***************************************/
//DFS
//BFS(队列解法)
//A*启发式搜索算法
//IDA*迭代深化A*搜索
//Dancing Link
/**************************************数据结构*************************************/
//并查集
class Disjoint_Set {
    int pre[MAXN];
    int find(int now) {
        return pre[now] == now ? now : (pre[now] = find(pre[now]));
    }
    void Union(int a, int b) {
        pre[find(a)] = find(b);
        return ;
    }
    void init(int n) {
        for (int i = 0; i <= n; ++i)
            pre[i] = i;
        return ;
    }
}
//线段树
class Segment_Tree {
    const unsigned int MAX = 1e5+10;
    unsigned int n, q, ITOR, sl, sr;
    struct RMQ{
        unsigned int l, r, nxl, nxr;
        long long lazy, sum;
    } tree[(MAX<<1)];
    long long Built(RMQ* point) {
        point->lazy = 0;
        if ((point->r - point->l) == 1) {
            point->nxl = 0, point->nxr = 0;
            scanf("%lld", &(point->sum));
            return point->sum;
        }
        unsigned int n = 1;
        while (n < (point->r-point->l)) n <<= 1;
        point->nxl = ++ITOR, point->nxr = ++ITOR;
        tree[point->nxl].l = point->l, tree[point->nxl].r = point->l + (n>>1);
        tree[point->nxr].l = point->l + (n>>1), tree[point->nxr].r = point->r;
        point->sum = (Built(&tree[point->nxl]) + Built(&tree[point->nxr]));
        return point->sum;
    }
    void init(){
        ITOR = 1;
        memset(&tree[0], 0, sizeof(tree[0]));
        tree[1].l = 0, tree[1].r = n, tree[1].lazy = 0;
        Built(&tree[1]);
    }
    long long search(RMQ* now, unsigned int l, unsigned int r) {
        if(now->l == now->r)
            return 0;
        if (l == now->l && r == now->r)
            return (now->sum + now->lazy * (r-l));
        now->sum += (now->lazy * (now->r - now->l));
        tree[now->nxl].lazy += now->lazy, tree[now->nxr].lazy += now->lazy;
        now->lazy = 0;
        if (l >= tree[now->nxl].r)
            return search(&tree[now->nxr], l, r);
        if (r <= tree[now->nxr].l)
            return search(&tree[now->nxl], l, r);
        return (search(&tree[now->nxl], l, tree[now->nxl].r) +
                search(&tree[now->nxr], tree[now->nxr].l, r));
    }
    long long add(RMQ* now, unsigned int l, unsigned int r, long long lazy) {
        if (now->l == now->r) return 0;
        if (l == now->l && r == now->r) {
            now->lazy += lazy;
            return (now->sum + now->lazy * (r-l));
        }
        now->sum += now->lazy * (now->r - now->l);
        now->sum += lazy * (r-l);
        tree[now->nxl].lazy += now->lazy, tree[now->nxr].lazy += now->lazy;
        now->lazy = 0;
        if (r <= tree[now->nxr].l)
            return add(&tree[now->nxl], l, r, lazy);
        if (l >= tree[now->nxr].l)
            return add(&tree[now->nxr], l, r, lazy);
        return (add(&tree[now->nxl], l, tree[now->nxl].r, lazy) +
                add(&tree[now->nxr], tree[now->nxr].l, r, lazy));

    }
    void judge(){
        init();
        scanf("%u%u", &sl, &sr);
        printf("%lld\n", search(&tree[1], sl-1, sr));
        scanf("%u%u%lld", &sl, &sr, &sn);
        add(&tree[1], sl-1, sr, sn);
    }
}
//划分树
//树状数组
//树链剖分
//字典树
//Treap
//伸展树(splay tree)
/****主席树****/
//静态区间k大
//动态区间k大
//区间不相同数数量
//树上路径点权第k大
//哈希表
//ELFhash(字符串哈希函数)
//莫队算法
/***************************************字符串**************************************/
//字符串最小表示法
//Manacher最长回文子串
class Manacher {
    int p[MAX];
    char S[MAX << 1], input[MAX];
    void init() {
        memset (P, 0, sizeof (P));
        int itor = 0, n = strlen(input);
        S[itor++] = '$';
        for (int i = 0; i < n; ++i) {
            S[itor++] = '#';
            S[itor++] = input[i];
        }
        S[itor++] = '#';
        S[itor] = '\0';
    }
    int manacher() {
        int mx = 0, id = 0, n = strlen(P);
        for (int i = 1; i < n; ++i) {
            if (mx > i) P[i] = min(P[2 * id - i], mx - i);
            else P[i] = 1;
            while (S[i + P[i]] == S[i - p[i]]) p[i]++;
            if (P[i] + i > mx) {
                mx = P[i] + i;
                id = i;
            }
        }
        return mx;
    }
}
//KMP
class KMP {
    const int MAXN = MAX;
    int nxt[MAXN], n, m;
    string text, pattern;
    void init() {
        memset (nxt, 0, sizeof (nxt));
        n = text.length(), m = pattern.length();
        return ;
    }
    void getNext() {
        nxt[0] = nxt[1] = 0;
        for (int i = 1; i < m; ++i) {
            // j is a pointer
            // like the link-pre-star
            // to jump to the prehead position.
            int j = nxt[i];
            while (j && pattern[i] != pattern[j]) j = nxt[j];
            nxt[i+1] = (pattern[j] == pattern[i] ? j+1 : 0);
        }
        return ;
    }
    int kmp() {
        int j = 0;
        // the vector is all the position of found position.
        //vector<int> found;
        for (int i = 0; i < n; ++i) {
            while (j && text[i] != pattern[j]) j = nxt[j];
            if (text[i] == pattern[j]) ++j;
            if (j == m) {
                // find the pattern at the pos(i-j+1);
                return i-j+1;
                //j = nxt[j];
                //found.push_back(i-j+1);
            }
        }
        return -1;
        //return found;
    }
}
//扩展kmp
//AC自动机
//AC自动机
class ahoCorasick {
    int size;
    queue <int> que; //built que
    struct State {
        int nxt[26];
        int fail, cnt;
        //fail Is the pointer when match failed.
        //cnt is the count of words at the end of this node.
    }state[MAN_T];
    void init() {
        while (que.size()) que.pop();
        for (int i = 0; i < MAN_T; ++i) {
            memset (state[i].nxt, 0, sizeof (state[i].nxt));
            state[i].fail = state[i].cnt = 0;
        }
        size = 1;
    }
    void insert(char *S) {
        int n = strlen(S);
        int now = 0;
        char c = 0;
        for (int i = 0; i < n; ++i) {
            c = S[i];
            if (!state[now].nxt[c - 'a'])
                state[now].nxt[c - 'a'] = size++;
            now = state[now].nxt[c - 'a'];
        }
        state[now].cnt++;
    }
    void build() {      //build the fail tree
        state[0].fail = -1;
        que.push(0);
        while (que.size()) {
            int u = que.front();
            que.pop();
            for (int i = 0; i < 26; ++i) {
                if (state[u].nxt[i]) {
                    if (u == 0) 
                        state[state[u].nxt[i]].fail = 0;
                    else {
                        int v = state[u].fail;
                        while (v != -1) {
                            if (state[v].nxt[i]) {
                                state[state[u].nxt[i]].fail = state[v].nxt[i];
                                break;
                            }
                            v = state[v].fail;
                        }
                        if (v == -1)
                            state[state[u].nxt[i]].fail = 0;
                    }
                    que.push(state[u].nxt[i]);
                }
            }
        }
    }
    int Get(int u) {
        int ret = 0;
        while (u) {
            ret += state[u].cnt;
            //state[u].cnt = 0;
            //if only match once, 
            //left the cnt to 0.
            //now the code will recount
            //like in "bbcbbc", the "bbc" appear twice.
            u = state[u].fail;
        }
        return ret;
    }
    int match(char *S) {
        int n = strlen(S);
        int ret = 0, now = 0;
        char c = 0;
        for (int i = 0 ; i < n; ++i) {
            c = S[i];
            if (state[now].nxt[c - 'a'])
                now = state[now].nxt[c - 'a'];
            else {
                int p = state[now].fail;
                while (p != -1 && state[p].nxt[c - 'a'] == 0)
                    p = state[p].fail;
                if (p == -1)
                    now = 0;
                else now = state[p].nxt[c - 'a'];
            }
            if (state[now].cnt)
                ret += Get(now);
            //compute the count of appear.
        }
        return ret;
    }
    int judge() {
        init();
        scanf("%d", &N);
        for (int i = 0; i < N; ++i) {
            scanf("%s", S);
            aho.insert(S);
        }
        build();
        scanf("%s", S);
        return match(S);
    }
}aho;
/****后缀数组****/
//DA倍增算法
//DC3算法
//后缀自动机
/****************************************图论***************************************/
//链式前向星
class Link_Pre_Star {
    struct Edge {
        int to, nxt, w;
    } edge[MAXE << 1]; //双向边
    int head[MAXN], ecnt;
    void init() {
        ecnt = 0;
        memset (head, -1, sizeof (head));
    }
    void add(int pre, int to, int w) { //单向边
        edge[ecnt].nxt = head[pre];
        edge[ecnt].w = w, edge[ecnt].to = to;
        head[pre] = ecnt++;
        //++in_degree[to], ++out_degree[pre];//出度入度
    }
    void _add(int u, int v, int w) {   //双向边
        edge[ecnt].nxt = head[u], edge[ecnt^1].nxt = head[v];
        edge[ecnt].w = edge[ecnt^1].w = w;
        edge[ecnt].to = v, edge[ecnt^1].to = u;
        head[u] = ecnt, head[v] = ecnt^1;
        ecnt += 2;
    }
}
//拓扑序
class Topological_Order { // from 0 to (n-1)
    void init() {
        qit = 0;
        for (int i = 0; i < n; ++i)
            if (ind[i] == 0)
                que[qit++] = i;
    }
    void topological_travel() {
        for (int i = 0; i < qit; ++i)
            for (int j = head[que[i]]; j != -1; j = edge[j].nxt) {
                pre = que[i], to = edge[j].to;
                //node[to] is next node in order
                if (!--ind[to])
                    que[qit++] = to;
            }
    }
}
/********************最小生成树********************/
//prim
class Prim { //mp[n][n], from 1 to n
    int n, m, u, v, w;
    int mp[MAX_N][MAX_N];
    bool used[MAX_N];
    void getin() {
        memset (mp, 0x3f, sizeof (mp));
        for (int i = 0; i <= n; ++i)
            mp[i][i] = 0;
        for (int i = 0; i < m; ++i) {
            scanf("%d%d%d", &u, &v, &w);
            mp[u][v] = mp[v][u] = min(w, mp[u][v]);
        }
    }
    int prime() {
        int ret = 0;
        memset (used, 0, sizeof (used));
        memset (dis, 0x3f, sizeof (dis));
        dis[1] = 0;
        for (int i = 1; i < n; ++i) {
            int now = 0;
            for (int j = 1; j <= n; ++j)
                if (!used[j] && (now == 0 || dis[j] < dis[now])) now = j;
            used[now] = 1;
            for (int j = 1; j <= n; ++j)
                if (!used[j]) dis[j] = min(dis[j], mp[now][j]);
        }
        for (int i = 2; i <= n; ++i) ret += dis[i];
        return ret;
    }
}
//kruskal
class Kruskal {
    int n, m, u, v, w, ans;
    int pre[MAX];
    struct Edge {
        int u, v, w;
    } edge[MAX * MAX];
    bool cmp(const Edge a, const Edge b) {
        return a.w < b.w;
    }
    void getin() {
        for (int i = 0; i < m; ++i) {
            scanf("%d%d%d", &u, &v, &w);
            edge[m].u = u, edge[m].v = v, edge[m].w = w;
        }
        sort (edge, edge+m, cmp);
    }
    int kurskal(Edge *edge, int m) {
        int now, ret = 0;
        for (int i = 0; i < m; ++i) {
            u = edge[i].u, v = edge[i].v;
            if (find(u) != find(v)) {
                //vtor.push_back(now);
                ret += edge[i].w;
                Union(u, v);
            }
        }
        return ret;
    }
}
//次小生成树
/********************单源最短距离********************/
//Dijkstra
class Dijkstra { // from 1 to n
    const int MAXN = 1010;
    const double INF = 1e9+7;
    double road[MAXN][MAXN], dis[MAXN];
    bool dis[MAXN];
    int n;
    double dij(int s, int e) {
        for (int i = 1; i <= n; ++i) {
            dis[i] = INF, dis[i] = 0;
        }
        dis[s] = 0.0;
        double mmin; int now;
        while (1) {
            mmin = INF; now = 0;
            for (int i = 1; i <= n; ++i)
                if (!dis[i] && dis[i] < mmin)
                    mmin = dis[i], now = i;
            if (mmin == INF) break;
            dis[now] = 1;
            for (int i = 1; i <= n; ++i) {
                if (dis[now] + road[now][i] < dis[i]){
                    dis[i] = dis[now] + road[now][i];
                }
            }
        }
        return dis[e];
    }
}
//堆优化Dijkstra
class Priority_Dijkstra { //from 1 to n
    struct Node {
        int id;
        bool operator < (const Node &b) const{
            return dis[id] > dis[b.id];
        }
    }node;
    const int INF = Max_Length;
    int dis[MAXN], n, m, pre, to, w;
    bool vis[MAXN];
    priority_queue <Node> que;
    int pri_dij(int st, int ed) {
        while (que.size()) que.pop();
        for (int i = 0; i <= n; ++i) {
            dis[i] = INF, vis[i] = 0;
        }
        int now = st;
        dis[now]= 0, node.id = now, que.push(node);
        while (que.size()) {
            now = que.top().id;
            que.pop();
            if (tois[now]) continue;
            for (int i = head[now]; i != -1; i = edge[i].nxt) {
                to = edge[i].to;
                if (dis[to] > dis[now] + edge[i].w) {
                    dis[to] = dis[now] + edge[i].w;
                    if (!tois[to]) {
                        node.id = to;
                        que.push(node);
                    }
                }
            }
            vis[now] = 1;
        }
        return dis[ed];
    }
}
//Bellman-Ford
//SPFA
class SPFA { //judge Negative Ring
    int dis[MAX_N], cnt[MAX_N];
    bool used[MAX_N], Negative_Ring;
    queue <int> que;
    int spfa (int st, int ed) {
        for (int i = 0; i <= n; ++i)
            used[i] = 0, dis[i] = INF, ;
        while (que.size()) que.pop();
        int now;
        used[st] = 1, dis[st] = 0, cnt[st] = 0;
        Negative_Ring = false;
        que.push(st);
        while (que.size()) {
            now = que.front(), que.pop();
            used[now] = 0;
            for (int i = head[now]; i != -1; i = edge[i].nxt) {
                if (dis[now] + edge[i].w < dis[edge[i].to]) {
                    dis[edge[i].to] = dis[now] + edge[i].w;
                    cnt[edge[i].to] = cht[now] + 1;//Negative Ring
                    if (cnt[edge[i].to] >= n) {
                        Negative_Ring = true;
                        return 0;
                    }
                    if (!used[edge[i].to]) {
                        used[edge[i].to] = 1;
                        que.push(edge[i].to);
                    }
                }
            }
        }
        return dis[ed];
    }
}
//Floyd 全图最短路 + 最小环
class Floyd {
    int d[MAX_N][MAX_N];
    void Floyd() {
        for (int k = 1; k <= n; ++k) {
            for (int i = 1; i < n; ++i)
                for (int j = 1; j < n; ++j)
                    minc = min(minc, d[i][j] + map[i][k] + map[k][j]);
            for (int i = 1; i <= n; ++i) 
                for (int j = 1; j <= n; ++j) 
                    d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
        }
    }
}

/****网络流****/
//最大流
//EdmondsKarp
//dinic
//SAP
//ISAP
//最小费用最大流
/****二分图****/
//匈牙利算法
//Hopcroft-Karp算法
//KM算法

/****双连通分量****/
// Tarjan求桥
class Tarjan_bridge {
    const int Size = 1e5+10;
    int head[Size], ver[Size << 1], nxt[Size << 1];
    int dfn[Size], low[Size];
    int n, m, tot, num;
    bool birdge[Size << 1];

    void add(int x, int y) {
        ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
    }
    void tarjan(int x, int in_edge) {
        dfn[x] = low[x] = ++num;
        for (int i = head[x]; i; i = nxt[i]) {
            int y = ver[i];
            if (!dfn[y]) {
                tarjan(y, 1);
                low[x] = min(low[x], low[y]);
              
                if (low[y] > dfn[x])
                    bridge[i] = bridge[i^1] = true;
            }
            else if (i != (in_edge ^ 1))
                low[x] = min(low[x], dfn[y]);
        }
    }
    int main() {
        cin >> n > m;
        tot = 1;
        for (int i = 1; i <= m; ++i) {
            int x, y;
            scanf ("%d%d", &x, &y);
            add(x, y), add(y, x);
        }
        for (int i = 1; i <= n; ++i)
            if (!dfn[i])
                tarjan(i, 0);
        for (int i = 2; i < tot; i += 2)
            if (bridge[i])
                printf ("%d %d\n", ver[i^1], ver[i]);
    }
    return 0;
}
//Tarjan求割点
class Tarjan_cut_vertexes {
    const int Size = 1e5+10;
    int head[Size], ver[Size << 1], nxt[Size << 1];
    int dfn[Size], low[Size], stk[Size];
    int n, m, tot, num, root;
    bool cut[Size];

    void add(int x, int y) {
        ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
    }
    void tarjan(int x) {
        dfn[x] = low[x] = ++num;
        int flag = 0;
        for (int i = head[x]; i; i = nxt[i]) {
            int y = ver[i];
            if (!dfn[y]) {
                tarjan(y, 1);
                low[x] = min(low[x], low[y]);
              
                if (low[y] > dfn[x]) {
                    ++flag;
                    if (x != root || flag > 1)
                        cut = true;
                }
            }
            else 
                low[x] = min(low[x], dfn[y]);
        }
    }
    int main() {
        cin >> n > m;
        tot = 1;
        for (int i = 1; i <= m; ++i) {
            int x, y;
            scanf ("%d%d", &x, &y);
            if (x == y) continue;
            add(x, y), add(y, x);
        }
        for (int i = 1; i <= n; ++i)
            if (!dfn[i])
                root = i, tarjan(i);
        for (int i = 1; i <= n; ++i)
            if (cut[i])
                printf ("%d ", i);
        puts("are cut-vertexes");
    }
    return 0;
}
//边双连通分量
class Tarjan_e_DCC {
    int c[Size], dcc;
    void dfs(int x) {
        c[x] = dcc;
        for (int i = head[x]; i; i = nxt[i]) {
            int y = ver[i];
            if (c[y] || bridge[i])
                continue;
            dfs(Y);
        }
    }
    int main() {
        /**
          *
          *
        **/
        for (int i = 1; i <= n; ++i) {
            if (!c[i]) {
                ++dcc;
                dfs(i);
            }
        }
        printf ("there're %d e-DCCs. \n", dcc);
        for (int i = 1; i <= n; ++i) {
            printf ("%d belongs to DCC %d.\n", i, c[i]);
        }
        return 0;
    }

    // e-DCC to node
    int hc[Size], vc[Size << 1], nc[Size << 1], tc;
    void add_c(int x, int y) {
        vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
    }
    int main() {
        /**
          *
          *
        **/
        tc = 1;
        for (int i = 2; i <= tot; ++i) {
            int x = ver[i^1], y = ver[i];
            if (c[x] == c[y]) continue;
            add_c(c[x], c[y]);
        }
        printf("the forest:\n\tnode: %d, edge(maybe same): %d\n", dcc, tc/2);
        for (itn i = 2; i < tc; ++i) {
            printf ("%d %d\n", vc[i^1], vc[i]);
        }
    }
    return 0;
}
//点双连通分量
class Tarjan_v_DCC {
    void tarjan(int x) {
        dfn[x] = low[x] = ++num;
        stack[++top] = x;
        if (x == root && head[x] == 0) { // 
            dcc[++cnt].push_back(x);
            return ;
        }
        int flag = 0;
        for (int i = head[x]; i; i = nxt[i]) {
            int y = ver[i];
            if (!dfn[y]) {
                tarjan(y);
                low[x] = min(low[x], low[y]);
                if (low[y] >= dfn[x]) {
                    flag++;
                    if (x != root || flag > 1)
                        cut[x] = true;
                    ++cnt;
                    int x;
                    do {
                        z = stack[top--];
                        dcc[cnt].push_back(z);
                    } while (z != y);
                    dcc[cnt].push_back(x);
                }
            }
            else
                low[x] = min(low[x], dfn[y]);
        }
        return ;
    }
    int main() {
        /**
          *
          *
        **/
        for (int i = 1; i <= cnt; ++i) {
            printf ("e-DCC #%d:", i);
            for (int j = 0; j < dcc[i].size(); ++j)
                printf (" %d", dcc[i][j]);
            puts("");
        }
      
        // v-DCC to node;
        int num = cnt;
        for (int i = 1; i <= n; ++i)
            if (cnt[i]) new_id[i] = ++num;
        tc = 1;
        for (int i = 1; i <= cnt; ++i)
            for (int j = 0; j < dcc[i].size(); ++j) {
                int x = dcc[i][j];
                if (cut[x]) {
                    add_c(i, new_id[x]);
                    add_c(new_id[x], i);
                }
                else 
                    c[x] = i;
            }
        printf ("the new forest:\n\tnode: %d, edge: %d\n", num, tc/2);
        printf ("the id from 1 ~ %d is v-DCC in old graph, id > %d is cut point",
                cnt, cnt);
        for (int i = 2; i < tc; i += 2)
            printf ("%d %d\n", vc[i^1], vc[i]);
        return 0;
    }
}
//tarjan 强连通分量
class Tarjan_SCC {
    const int N = 1e5+10, M = 1e6 + 10;
    int ver[M], nxt[M], head[N], dfn[N], low[N];
    int stk[N], ins[N], c[N];
    vector <int> scc[N];
    int n, m, tot, num, top, cnt;
    void add(int x, int y) {
        ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
    }
    void tarjan(int x) {
        dfn[x] = low[x] = ++num;
        stk[++top] = x, ins[x] = 1;
        for (int i = head[x]; i; i = nxt[i]) {
            if (!dfn[ver[i]]) {
                tarjan(ver[i]);
                low[x] = min(low[x], low[ver[i]]);
            }
            else if (ins[ver[i]])
                low[x] = min(low[x], low[ver[i]]);
        }
        if (dfn[x] == low[x]) {
            ++cnt; int y;
            do {
                y = stk[top--], ins[y] = 0;
                c[y] = cnt, scc[cnt].push_back(y);
            } while (x != y);
        }
    }
    void add_c(int x, int y) {
        vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
    }
    int main() {
        cin >> n >> m;
        for (int i = 1; i <= m; ++i) {
            int x, y;
            scanf ("%d%d", &x, &y);
            add(x, y);
        }
        for (int i = 1; i <= n; ++i) {
            if (!dfn[i]) tarjan(i);
        }

        // SCC to node;
        for (int x = 1; x <= n; ++x) { 
            for (int i = head[x]; i; i = nxt[i]) {
                int y = ver[i];
                if (c[x] == c[y]) 
                    continue;
                add_c(c[x], c[y]);
            }
        }
    }

}
// 欧拉回路
class get_Euler {
    const int MAX = 1e5 + 10;
    int head[MAX], ver[MA], nxt[MAX], tot;
    int stk[MAX], ans[MAX];
    bool vis[MAX];
    int n, m, top, t;
    void add(int x, int y) {
        ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
    }
    void euler() {
        stk[++top] = 1;
        while (top > 0) {
            int x = stack[top], i = head[x];
            while (i && vis[i]) 
                i = nxt[i];
            if (i) {
                stk[++top] = ver[i];
                vis[i] = vis[i^1] = true;
                head[x] = nxt[i];
            }
            else {
                top--;
                ans[++t] = x;
            }
        }
    }
    int main() {
        cin >> n >> m;
        tot = 1;
        for (int i = 1; i <= m; ++i) {
            int x, y;
            scanf ("%d%d", &x, &y);
            add(x, y), add(y, x);
        }
        euler();
        for (int i = t; i; i--) {
            printf ("%d\n", ans[i]);
        }
    }
}


/********************最近公共祖先(LCb)********************/
class LCA {
    struct Edge {
        int to, nxt, w;
    }edge[MAX << 1];
    bool used[MAX];
    int T, n, m, tot, t, u, v, w, to;
    int head[MAX], ind[MAX], f[MAX][20], deep[MAX];
    long long dis[MAX];
    queue <int> que;
    void addedge(int from, int to, int w = 0) {
        edge[tot].to = to, edge[tot].w = w;
        edge[tot].nxt = head[from], head[from] = tot++;
    }
    void init() {
        tot=  0;
        memset (head, -1, sizeof (head));
        memset (dis, 0, sizeof (dis));
        memset (deep, 0, sizeof (deep));
        memset (used, 0, sizeof (used));
        //memset (ind, 0, sizeof (ind));
    }
    void bfs(int h) {
        int now;
        while (que.size()) que.pop();
        que.push(h), used[h] = 1;
        deep[h] = 0, dis[h] = 0;
        while (que.size()) {
            now = que.front(), que.pop();
            used[now] = 1;
            for (int i = head[now]; i != -1; i = edge[i].nxt) {
                to = edge[i].to;
                if (used[to]) continue;
                dis[to] = dis[now] + edge[i].w;
                deep[to] = deep[now] + 1;
                f[to][0] = now;
                for (int j = 1; j <= t; ++j)
                    f[to][j] = f[f[to][j-1]][j-1];
                que.push(to), used[to] = 1;
            }
        }
        return ;
    }
    int lca(int x, int  y) {
        if (deep[x] > deep[y]) swap(x, y);
        for (int i = t; i >= 0; --i)
            if (deep[f[y][i]] >= deep[x])
                y = f[y][i];
        if (x == y) return x;
        for (int i = t; i >= 0; --i)
            if (f[x][i] != f[y][i])
                x = f[x][i], y = f[y][i];
        return f[x][0];
    }
    void getin() {
        cin >> n >> m;//n points, m queries
        init();
        t = (int) (log(n) / log(2)) + 1;

        for (int i = 0; i < n-1; ++i) {
            cin >> u >> v >> w;
            addedge(u, v , w), addedge(v, u, w);
            //++ind[v]; //Directed graph
        }
        /** Directed graph
        for (int i = 1; i <= n; ++i) {
            if (ind[i] == 0) {
                bfs(i);
                break;
            }
        }
        **/
        bfs(1);
        return ;
    }
}
//tarjan
//ST-RMQ在线算法
/****************************************数论***************************************/
//Fibonacci Number
//Greatest Common Ditoisor 最大公约数,欧几里德算法
class GCD { //注意处理负数!!!!
    int gcd(int a,int b) {
        return b ? gcd(b, a % b) : b;
    }
    int fstgcd(int a, int b) {
        IF (a < b) a ^= b, b ^= a, a ^= b;
        int t;
        while (b)
            t = b, b = a % b, a = t;
        return a;
    }
}
//Lowest Common Multiple 最小公倍数
class LCM { //注意处理负数!!!!
    int lcm(int a, int b) {
        return a / gcd(a, b) * b;
    }
}
//扩展欧几里德算法: 未经验证
//扩展欧几里德求出a*x+b*y=gcd(a,b)的一组解,x0,y0,
//x=x2+b/gcd(a,b)*t,y=y2-a/gcd(a,b)*t,(t为整数),即为ax+by=c的所有解。
class ExGcd { 
    #define int long long
    int exgcd(int a, int b, int &x, int &y) {
        if (b == 0) {
            x = 1;
            y = 0;
            return a;
        }
        long long g = exgcd(b, a % b, x, y);
        //x1=y2,  y1=x2-a/b*y2
        long long t = x - a / b * y;
        x = y;
        y = t;
        return g;  //return gcd
    }
    int solve(int a, int b, int c) {
        int x, y, x0, y0, _x1, _y1;
        int t = exgcd(a, b, x0, y0);
        if(c % t != 0)
            return 0;// NO solution;
        x = x0 + b / t; y = y0 - a / t;             //通解
        _x1 = (x * c / t), _y1 = (y * c / t);       //求原方程的解
                                                
        _x1 = (x0 * c / t) % b;                     //取x的最小整数解;
        _y1 = (_x1 % (b / t) + b / t) % (b / t);
        printf("%d %d\n", _x1, _y1);
        return 0;
    }
}
//快速幂运算
class Fast_Pow {
    #define int long long
    int fastpow(int a, int b, int mod) {
        int ret = 1;
        a %= mod;
        for ( ; b; b >>= 1) {
            if (b & 1)
                (res *= a) %= mod;
            (a *= a) %= mod;
        }
        return ret;
    }
}
/****质数判断****/
//欧拉素数筛
class Celect_Prime {
    bool isprime[MAXN]={0};
    int prime[MAXP]={0}, p=0;
    void get_prime (int n) {
        memset (isprime, true, sizeof ( isprime ) );
        isprime[0] = isprime[1] = false;
        for (int k = 2; k <= n; k++ ) {
            if (isprime[k]) prime[p++] = k;
            for (int i = 0; i < p; i++) {
                if (k * prime[i] > n)
                    break;
                isprime[k * prime[i]] = false;
                if (k % prime[i] == 0)
                    break;
            }
        }
    }
}
//简单Prime判断
//Sietoe Prime  素数筛选法
//Miller-Rabin 素数测试算法
class Miller_Rabin {
    //from Air 寒域
    //  Miller_Rabin判断素数
    bool Miller_Rabin(long long int n) {
        return Miller_Rabin(n, 40);
    }
    //  Miller_Rabin判断素数
    bool Miller_Rabin(long long int n, long long int S) {
        if (n == 2)return true;
        if (n < 2 || !(n & 1))return false;
        int t = 0;
        long long int a, x, y, u = n - 1;
        while ((u & 1) == 0) t++, u >>= 1;
        for (int i = 0; i < S; i++) {
            a = rand() % (n - 1) + 1;
            x = modular_exp(a, u, n);
            for (int j = 0; j < t; j++) {
                y = modular_multi(x, x, n);
                if (y == 1 && x != 1 && x != n - 1)
                    return false;
                x = y;
            }
            if (x != 1)
                return false;
        }
        return true;
    }
}
//唯一分解定理,因子分解求和
//pollard_rho 算法  质因数分解
//欧拉函数
//约瑟夫环
//高斯消元
class Gaussian_Elimination {  
    const double eps = 1e-8;
    int n, m;            // n rows, m columns;
    int a[MAX][MAX];     // a[1][1] to a[n][m];
    int fabs(int a) {return a > 0 ? a : -a; }
    int fraction_reduction(int *a, int n) {
        int ret = gcd(a[0], a[1]);
        for (int i = 0; i < n && ret != 1; ++i) 
            ret = gcd(ret, a[i]);
        if (ret == 0 || fabs(ret) == 1) return ret;
        for (int i = 0; i < n; ++i)
            a[i] /= ret;
        return ret;
    }
    int Gaussian_Elimination() {
        int itor = 0;
        for (int i = 1; i <= n; ++i) {
            while (fabs(a[i][itor]) < eps) {
                itor++;
                for (int j = i; j <= n; ++j)
                    if (fabs(a[j][itor]) > eps && fabs(a[i][itor]) < eps)
                        for (int k = 1; k <= m; ++k)
                            swap(a[i][k], a[j][k]);
            }
            // i-1 main, n-i+1 freedom
            bool zero = true;
            for (int j = 1; zero && j < m; ++j)
                if (fabs(a[i][j]) > eps)
                    zero = false;
            if (zero) {                             // a[i][1] to a[i][m-1] are 0
                if (fabs(a[i][m]) < eps)            // all zero, return.
                    return i-1;
                else                                // 1 = 0, no answer;
                    return -1;
            }
            // Cancellation a*x[i]
            fraction_reduction(a[i]+1, m);
            for (int j = 1; j <= n; ++j) {
                if (i == j) 
                    continue;
                if (fabs(a[i][itor]) < eps || fabs(a[j][itor]) < eps)
                    continue;
                //double rate = a[j][itor] / a[i][itor];
                /************* use double need not use those ***************/
                int LCM = fabs(lcm(a[j][itor], a[i][itor]));
                int dij = LCM / a[j][itor], dii = LCM / a[i][itor];
                for (int k = 1; k < itor; ++k)
                    a[j][k] *= dij;
                /************* use double need not use those ***************/
                for (int k = itor; k <= m; ++k)
                    //a[j][k] -= a[i][k] * rate;    // use double 
                    a[j][k] = a[j][k] * dij - a[i][k] * dii;
                fraction_reduction(a[j]+1, m);
            }
        }
        return n;
    }
}

/**************************************组合数学*************************************/
//排列组合
class Combination {

}
//Lucas定理
class Lucas {//C(n, m) % mod;
    const int MAX = 2e5+10;
    long long jc[MAX], jcinv[MAX];
    void init() {
        jc[0] = 1, jcinv[0] = 1;
        for (int i = 1; i < MAX; ++i) {
            jc[i] = jc[i-1] * i % mod;
            jcinv[i] = fastpow(jc[i], mod - 2);
        }
    }
    int C(int n, int m) {
        long long ret = 1, a, b;
        while (n && m) {
            a = n % p, b = m % p;
            if (a < b) return 0; //分子含模, 一定得0
            (ret *= (jc[a] * jcinv[b] % mod * jcinv[a-b] % mod)) % mod;
            n /= p, m /= p;
        }
        return ret;
    }
}
//全排列
//错排公式
//母函数
//整数划分
//康托展开
//逆康托展开
//Catalan Number
//Stirling Number(Second Kind)
//容斥原理
//矩阵快速幂
class Matrix_Fast_Pow {
    const int MAX_M = 10;
    const int mod = 1e9+7;
    struct Martix {
        int ary[MAX_M][MAX_M];
        int row, column;
        void clear() {
            memset(ary, 0, sizeof(ary));
            row = 0, column = 0;
        }
        void getin(int row, int column) {
            for (int i = 0; i < row; ++i)
                for (int j = 0; j < column; ++j)
                    cin >> ary[i][j];
        }
        void output() {
            for (int i = 0; i < row; ++i) {
                for (int j = 0; j < column; ++j)
                    cout << ary[i][j] << " ";
                cout << endl;
            }
        }
        Martix operator + (const Martix &b) const {
            Martix tmp;
            tmp.row = row, tmp.column = column;
            for (int i = 0; i < row; ++i)
                for (int j = 0; j < column; ++j)
                    tmp.ary[i][j] = ary[i][j] + b.ary[i][j];
        }
        Martix operator - (const Martix &b) const {
            Martix tmp;
            tmp.row = row, tmp.column = column;
            for (int i = 0; i < row; ++i)
                for (int j = 0; j < column; ++j)
                    tmp.ary[i][j] = ary[i][j] - b.ary[i][j];
        }
        Martix operator * (const Martix &b) const {
            Martix tmp;
            tmp.clear();
            if (column != b.row)
                return tmp;
            tmp.row = row, tmp.column = b.column;
            for (int i = 0; i < row; ++i)
                for (int j = 0; j < b.column; ++j)
                    for (int k = 0; k < column; ++k) {
                        long long t = (1LL*ary[i][k]%mod)*(b.ary[k][j]%mod);
                        tmp.ary[i][j] += (int)(t%mod);
                        while (tmp.ary[i][j] >= mod) tmp.ary[i][j] -= mod;
                    }
            return tmp;
        }
    } matrix, mt;
    Martix matpow(Martix tmp, int n, int mod) {
        Martix ret;
        ret.row = tmp.row, ret.column = tmp.column;
        for (int i = 0; i < tmp.row; ++i)
            for(int j = 0; j < tmp.row; ++j)
                ret.ary[i][j] = (i == j);
        while (n) {
            if (n & 1)
                ret = (ret * tmp);
            tmp = (tmp * tmp), n >>= 1;
        }
        return ret;
    }
}
/**************************************计算几何*************************************/
class Computed_Geometry {
    //坐标向量
    const double eps = 1e-8;
    const double pi = acos(-1);
    int sgn(double x) {
        if (fabs(x) < eps)return 0;
        if (x < 0)return -1;
        else return 1;
    }
    double eps() {
        return RANDOM(); //返回一个在1e-7级别的随机数
    }
    struct Point {
    #define TE double
    //#define TE int
        TE x, y;
        Point() {}
        Point(TE x, TE y) : x(x + eps()), y(y + eps()) {}
        bool operator < (const Point &b) const {
            return x < b.x || (x == b.x && y < b.y);
        }
        bool operator == (const Point &b) const {
            return x == b.x && y == b.y;
        }
        Point operator + (const Point &b) const {
            return (Point){x + b.x, y + b.y};
        }
        Point operator + (const double b) const {
            return (Point) {
                x * cos(b) - y * sin(b), 
                x * sin(b) + y * cos(b)
            };
        } // 逆时针旋转角度b
        Point operator - (const Point &b) const {
            return (Point) {x - b.x, y - b.y};
        }
        Point operator * (const TE b) const {
            return (Point) {x * b, y * b};
        }
        TE operator * (const Point &b) const {
            return (x * b.x + y * b.y);
        }
        TE operator ^ (const Point &b) const {
            return (x * b.y - y * b.x);
        }
        TE operator &(const Point & b)const {
            return sqrt((*this - b)*(*this - b));
        } //两点之间距离
    };
    struct Line {
        Point s, e;
        Line() {}
        Line(Point s, Point e) : s(s), e(e) {}
        bool operator ==(const Line & b)const {
            return s == b.s && e == b.e;
        }
        Point getV() {     //获取Line的向量
            return e - s;
        }
        // 两直线相交求交点
        // 返回为(INF,INF)表示直线重合
        // (-INF,-INF) 表示平行
        // (x,y)是相交的交点
        Point operator &(const Line & b)const {
            Point res = s;
            if (sgn((s - e) ^ (b.s - b.e)) == 0) {
                if (sgn((s - b.e) ^ (b.s - b.e)) == 0)
                    return Point(INF, INF);        //重合
                else return Point(-INF, -INF);     //平行
            }
            double t = ((s - b.s) ^ (b.s - b.e)) / ((s - e) ^ (b.s - b.e));
            res.x += (e.x - s.x)*t;
            res.y += (e.y - s.y)*t;
            return res;
        }
        bool operator ^ (const Line & b) const { // 判断线段相交
            return
                (((b.s - s) ^ (b.e - s)) * ((b.s - e) * (b.e - e)) < 0) &&
                (((s - b.s) ^ (e - b.s)) * ((s - b.e) * (e - b.e)) < 0);
        }
    };
    /****三角形****/
    //三角形面积公式
    double GetTribngleSqubre(Point b, Point b, Point c) {
        return fabs((c - b) ^ (c - b)) / 2;
    }
    double GetTribngleSqubre(double b, double b, double c) {
        double p = (b + b + c) / 2;
        return sqrt (p * (p - b) * (p - b) * (p - c));
    }
    //三角形内切圆半径公式
    //三角形外接圆半径公式
    //圆内接四边形面积公式
    //多边形面积
    double GetSqubre(Point *a, int n) {
        double ret = 0;
        for (int i = 0; i < n; ++i) {
            ret += a[i] * a[(i+1) % n];
        }
        ret = fabs(ret) / 2;
        return ret;
    }
    //凸包
    class Convex_Hull {
        int calc(const Point &a, const Point &b, const Point &c) {
            return (b - a) ^ (c - a);
        }

        int convex_hull(Point *a, int n, int *q) {
            // this function will return the count of points in convex hull
            // the order is in the arrby q[]
            // the input arrby a[] MUST be sorted bnd uniqued.
            // sort (a, a+n); n = unique(a, a+n) - a;
            int t = 0;
            for (int i = 0; i < n; ++i) {
                while (t > 1 && calc(a[q[t-1]], a[q[t]], a[i]) < 0)
                    t--;  // don't wanna the point in one line "<" -> "<="
                q[++t] = i;
            }
            int tmp = t;
            for (int i = n - 2; i >= 0; --i) {
                while (tmp < t && calc(a[q[t-1]], a[q[t]], a[i]) < 0)
                    t--;  // don't wanna the point in one line "<" -> "<="
                q[++t] = i;
            }
            int now = 0;
            for (int i = 1; i <= t; ++i) {
                now = q[i];
                cout << a[now].x << ", " << a[now].y << endl;
            }
            cout << endl << endl;
            return t;
        }
        void judge() {
            int n, cnt, now;
            int q[MAX] = {0};
            while (cin >> n) {
                for (int i = 0; i < n; ++i) {
                    cin >> a[i].x >> a[i].y;
                }
                sort (a, a+n);
                n = unique(a, a+n) - a;
                cnt = convex_hull (a, n, q);
                for (int i = 1; i <= cnt; ++i) {
                    now = q[i];
                    cout << a[now].x << ", " << a[now].y << endl;
                }
            }
            return ;
        }
    }
    //三分求极值
}
/***********************博弈论**********************/
//巴什博弈:
//威佐夫博弈:
//nim博弈:
//k倍减法博弈:
//sg函数



/*WISH GOD BLESS US*/
/*********************************
to microsoft words
up: 1.27cm, down: 1.27cm
left: 0.6cm, right: 0.3cm
two columns with dividing line
columns wights: 38.62
distance: 0.5
word size: 9
word type: Cbliforbibn FB
**********************************
syntax on
set nu
set tabstop=4
set softtabstop=4
set shiftwidth=4
set expandtab
set cursorline
set ruler
set autoindent
set mouse=a
set cin
set smartindent
set vb t_vb=
set incsearch
colorscheme koehler
*********************************/